This concise text presents an introduction to the emerging area of reducing complex nonlinear differential equations or time-resolved data sets to spectral submanifolds (SSMs). SSMs are ubiquitous low-dimensional attracting invariant manifolds that can be constructed systematically, building on the spectral properties of the linear part of a ......
As experimental data sets have grown and computational power has increased, new tools have been developed that have the power to model new systems and fundamentally alter how current systems are analyzed. This book brings together modern computational tools to provide an accurate understanding of dynamic data. The techniques build on ......
Set-valued, convex, and nonsmooth analysis are relatively modern branches of mathematical analysis and increasingly relevant in current control theory and control engineering literature. The first book of this scope and at this level, Set-Valued, Convex, and Nonsmooth Analysis in Dynamics and Control serves as a broad introduction to the field and ......
This concise, self-contained volume introduces convex analysis and optimization algorithms, with an emphasis on bridging the two areas. It explores cutting-edge algorithms--such as the proximal gradient, Douglas-Rachford, Peaceman-Rachford, and FISTA--that have applications in machine learning, signal processing, image reconstruction, and other ......
Theory, Algorithms, and Applications with Python and MATLAB
Built on the framework of the successful first edition, this book serves as a modern introduction to the field of optimization. The author's objective is to provide the foundations of theory and algorithms of nonlinear optimization as well as to present a variety of applications from diverse areas of applied sciences. Introduction to Nonlinear ......
Inverse scattering theory is a major theme in applied mathematics, with applications to such diverse areas as medical imaging, geophysical exploration, and nondestructive testing. The inverse scattering problem is both nonlinear and ill-posed, thus presenting challenges in the development of efficient inversion algorithms. A further complication ......
Partial differential equations (PDEs) are the main tool to describe spatially and temporally extended systems in nature. PDEs usually come with parameters, and the study of the parameter dependence of their solutions is an important task. Letting one parameter vary typically yields a branch of solutions, and at special parameter values, new ......
The Portable, Extensible Toolkit for Scientific Computation (PETSc) is an open-source library of advanced data structures and methods for solving linear and nonlinear equations and for managing discretizations. This book uses these modern numerical tools to demonstrate how to solve nonlinear partial differential equations (PDEs) in parallel. It ......
Continuous-Time, Sampled-Data, and Networked Systems
Engineering systems operate through actuators, most of which will exhibit phenomena such as saturation or zones of no operation, commonly known as dead zones. These are examples of piecewise-affine characteristics, and they can have a considerable impact on the stability and performance of engineering systems. This book targets controller design ......