A compendium of the authors' recently published results, this book discusses sliding mode control of uncertain nonlinear systems, with a particular emphasis on advanced and optimization based algorithms. The authors survey classical sliding mode control theory and introduce four new methods of advanced sliding mode control. They analyze classical ......
In many dynamical systems, time delays arise because of the time it takes to measure system states, perceive and evaluate events, formulate decisions, and act on those decisions. The presence of delays may lead to undesirable outcomes; without an engineered design, the dynamics may underperform, oscillate, and even become unstable. How to study ......
This book is about making decisions driven by experience. In this context, a scenario is an observation that comes from the environment, and scenario optimization refers to optimizing decisions over a set of available scenarios. Scenario optimization can be applied across a variety of fields, including machine learning, quantitative finance, ......
This text presents a unique treatment of network control systems. Drawing from fundamental principles of dynamical systems theory and dynamical thermodynamics, the authors develop a continuous-time, discrete-time, and hybrid dynamical system and control framework for linear and nonlinear large-scale network systems. The proposed framework extends ......
Compressed sensing is a relatively recent area of research that refers to the recovery of high-dimensional but low-complexity objects from a limited number of measurements. The topic has applications to signal/image processing and computer algorithms, and it draws from a variety of mathematical techniques such as graph theory, probability theory, ......
Matrix Analysis and Computations introduces the basics of matrix analysis and presents representative methods and their corresponding theories in matrix computations. In this textbook, readers will find: The matrix theory necessary for direct and iterative methods for solving systems of linear equations. Systematic methods and rigorous theory on ......
Using material from many different sources in a systematic and unified way, this self-contained book provides both rigorous mathematical theory and practical numerical insights while developing a framework for determining the convergence rate of discrete approximations to optimal control problems. Elements of the framework include the reference ......
This self-contained textbook provides the foundations of linear optimization, covering topics in both continuous and discrete linear optimization. It gradually builds the connection between theory, algorithms, and applications so that readers gain a theoretical and algorithmic foundation, familiarity with a variety of applications, and the ability ......
Most books on algorithms are narrowly focused on a single field of application. This unique book cuts across discipline boundaries, exposing readers to the most successful algorithms from a variety of fields. Algorithm derivation is a legitimate branch of the mathematical sciences driven by hardware advances and the demands of many scientific ......