Discrete Painleve equations are nonlinear difference equations, which arise from translations on crystallographic lattices. The deceptive simplicity of this statement hides immensely rich mathematical properties, connecting dynamical systems, algebraic geometry, Coxeter groups, topology, special functions theory, and mathematical physics. This ......
A resurgence of interest in network synthesis in the last decade, motivated in part by the introduction of the inerter, has led to the need for a better understanding of the most economical way to realize a given passive impedance. This monograph outlines the main contributions to the field of passive network synthesis and presents new research ......
The theory of complex dynamics in one variable, initiated by Fatou and Julia in the early twentieth century, concerns the iteration of a rational function acting on the Riemann sphere. Building on foundational investigations of $p$-adic dynamics in the late twentieth century, dynamics in one non-archimedean variable is the analogous theory over ......
This volume contains the proceedings of the Research Workshop of the Israel Science Foundation on Groups, Algebras and Identities, held from March 20-24, 2016, at Bar-Ilan University and the Hebrew University of Jerusalem, Israel, in honor of Boris Plotkin's 90th birthday. The papers in this volume cover various topics of universal algebra, ......
This volume contains a collection of papers on algebraic curves and their applications. While algebraic curves traditionally have provided a path toward modern algebraic geometry, they also provide many applications in number theory, computer security and cryptography, coding theory, differential equations, and more.
This volume contains the proceedings of the Conference on Representation Theory and Algebraic Geometry, held in honor of Joseph Bernstein, from June 11-16, 2017, at the Weizmann Institute of Science and The Hebrew University of Jerusalem. The topics reflect the decisive and diverse impact of Bernstein on representation theory in its broadest ......
Linear Algebra: Concepts and Applications is designed to be used in a first linear algebra course taken by mathematics and science majors. It provides a complete coverage of core linear algebra topics, including vectors and matrices, systems of linear equations, general vector spaces, linear transformations, eigenvalues, and eigenvectors. All ......
For thirty years, the biennial international conference AGC$^2$T (Arithmetic, Geometry, Cryptography, and Coding Theory) has brought researchers to Marseille to build connections between arithmetic geometry and its applications, originally highlighting coding theory but more recently including cryptography and other areas as well. This volume ......
Nonassociative mathematics is a broad research area that studies mathematical structures violating the associative law $x(yz)=(xy)z$. The topics covered by nonassociative mathematics include quasigroups, loops, Latin squares, Lie algebras, Jordan algebras, octonions, racks, quandles, and their applications. This volume contains the proceedings of ......