Alexandrov spaces are defined via axioms similar to those of the Euclid axioms but where certain equalities are replaced with inequalities. Depending on the signs of the inequalities, we obtain Alexandrov spaces with curvature bounded above (CBA) and curvature bounded below (CBB). Even though the definitions of the two classes of spaces are ......
Alexandrov spaces are defined via axioms similar to those of the Euclid axioms but where certain equalities are replaced with inequalities. Depending on the signs of the inequalities, we obtain Alexandrov spaces with curvature bounded above (CBA) and curvature bounded below (CBB). Even though the definitions of the two classes of spaces are ......
This textbook offers a rigorous mathematical introduction to cellular automata (CA). Numerous colorful graphics illustrate the many intriguing phenomena, inviting undergraduates to step into the rich field of symbolic dynamics. Beginning with a brief history, the first half of the book establishes the mathematical foundations of cellular automata. ......
This volume contains the proceedings of the 2017 Georgia International Topology Conference, held from May 22-June 2, 2017, at the University of Georgia, Athens, Georgia. The papers contained in this volume cover topics ranging from symplectic topology to classical knot theory to topology of 3- and 4-dimensional manifolds to geometric group theory. ......
The connective topological modular forms spectrum, $tmf$, is in a sense initial among elliptic spectra, and as such is an important link between the homotopy groups of spheres and modular forms. A primary goal of this volume is to give a complete account, with full proofs, of the homotopy of $tmf$ and several $tmf$-module spectra by means of the ......
This two-volume set containts parts I and II. Each volume is a collection of articles written in memory of Boris Dubrovin (1950-2019). The authors express their admiration for his remarkable personality and for the contributions he made to mathematical physics. For many of the authors, Dubrovin was a friend, colleague, inspiring mentor, and ......
Borel's Conjecture entered the mathematics arena in 1919 as an innocuous remark about sets of real numbers in the context of a new covering property introduced by Emile Borel. In the 100 years since, this conjecture has led to a remarkably rich adventure of discovery in mathematics, producing independent results and the discovery of countable ......
This book represents a novel approach to differential topology. Its main focus is to give a comprehensive introduction to the classification of manifolds, with special attention paid to the case of surfaces, for which the book provides a complete classification from many points of view: topological, smooth, constant curvature, complex, and ......
This book contains the proceedings of the AMS Special Session on Topology of Biopolymers, held from April 21-22, 2018, at Northeastern University, Boston, MA. The papers cover recent results on the topology and geometry of DNA and protein knotting using techniques from knot theory, spatial graph theory, differential geometry, molecular ......