We show that if a hyperbolic knot manifold M contains an essential twicepunctured torus F with boundary slope ? and admits a filling with slope ? producing a Seifert fibred space, then the distance between the slopes ? and ? is less than or equal to 5 unless M is the exterior of the figure eight knot. The result is sharp; the bound of 5 can be ......
It is a longstanding unsolved problem to characterize the optimal feedbacks for general SLQs (i.e., stochastic linear quadratic control problems) with random coefficients in infinite dimensions; while the same problem but in finite dimensions was just addressed very recently. This paper is devoted to giving a solution to this problem under some ......
For any manifold Np admitting an Einstein metric with positive Einstein constant, we study the behavior of the Ricci flow on high-dimensional products M = Np x Sq+1 with doubly warped product metrics. In particular, we provide a rigorous construction of local, type II, conical singularity formation on such spaces. It is shown that for any k > 1 ......
We consider the gravity water waves system with a periodic one-dimensional interface in infinite depth and we establish the existence and the linear stability of small amplitude, quasi-periodic in time, traveling waves. This provides the first existence result of quasi-periodic water waves solutions bifurcating from a completely resonant elliptic ......
Given a compact Lie group G and a commutative orthogonal ring spectrum R such that R[G]* = ?*(R ? G+) is finitely generated and projective over ?*(R), we construct a multiplicative G-Tate spectral sequence for each R-module X in orthogonal G-spectra, with E2-page given by the Hopf algebra Tate cohomology of R[G]* with coefficients in ?*(X). Under ......
Let K be an algebraically closed field of characteristic zero, and let G be a connected reductive algebraic group over K. We address the problem of classifying triples (G, H, V), where H is a proper connected subgroup of G, and V is a finite-dimensional irreducible G-module such that the restriction of V to H is multiplicity-free -- that is, each ......
Over a p-adic local field F of characteristic zero, we develop a new type of harmonic analysis on an extended symplectic group G = Gm x Sp2n. It is associated to the Langlands ?-functions attached to any irreducible admissible representations ? ? ? of G(F) and the standard representation ? of the dual group G?(C), and confirms a series of the ......
In previous work with M.C. Fernandes, we found a Lie algebroid symmetry for the Einstein evolution equations. The present work was motivated by the effort to combine this symmetry with the hamiltonian structure of the equations to explain the coisotropic structure of the constraint subset for the initial value problem. In this paper, we extend the ......