Present a proof of Kirchberg's classification theorem: two separable, nuclear, $\mathcal {O}_\infty $-Stable $C^*$-algebras are stably isomorphic if and only if they are idealrelated KK-equivalent. In particular, this provides a more elementary proof of the Kirchberg-Phillips theorem which is isolated in the paper to increase readability of this ......
Various coordinate rings of varieties appearing in the theory of Poisson Lie groups and Poisson homogeneous spaces belong to the large, axiomatically defined class of symmetric Poisson nilpotent algebras, e.g. coordinate rings of Schubert cells for symmetrizable Kac-Moody groups, affine charts of Bott-Samelson varieties, coordinate rings of double ......
Ce livre constitue un expose detaille de la serie de cours donnes en 2020 par le Prof. Nicolas Bergeron, titulaire de la Chaire Aisenstadt au CRM de Montreal. L'objet de ce texte est une ample generalisation d'une famille d'identites classiques, notamment la formule d'addition de la fonction cotangente ou celle des series d'Eisenstein. Le livre ......
Let G be the group of rational points of a split connected reductive group over a nonarchimedean local field of residue characteristic p.LetI be a pro-p Iwahori subgroup of G and let R be a commutative quasi-Frobenius ring. If H = R[I\G/I] denotes the pro-p Iwahori- Hecke algebra of G over R we clarify the relation between the category of ......
William Thurston's work has had a profound influence on mathematics. He connected whole mathematical subjects in entirely new ways and changed the way mathematicians think about geometry, topology, foliations, group theory, dynamical systems, and the way these areas interact. His emphasis on understanding and imagination in mathematical learning ......
II. 3-Manifolds, Complexity and Geometric Group Theory
William Thurston's work has had a profound influence on mathematics. He connected whole mathematical subjects in entirely new ways and changed the way mathematicians think about geometry, topology, foliations, group theory, dynamical systems, and the way these areas interact. His emphasis on understanding and imagination in mathematical learning ......
III. Dynamics, Computer Science and General Interest
William Thurston's work has had a profound influence on mathematics. He connected whole mathematical subjects in entirely new ways and changed the way mathematicians think about geometry, topology, foliations, group theory, dynamical systems, and the way these areas interact. His emphasis on understanding and imagination in mathematical learning ......
This set contains the Collected Works of William P. Thurston with Commentary, Volumes I-III, and The Geometry and Topology of Three-Manifolds. William Thurston's work has had a profound influence on mathematics. He connected whole mathematical subjects in entirely new ways and changed the way mathematicians think about geometry, topology, ......