Essays on Amazing Physical Phenomena and their Understanding by Mathematicians
This collection of 39 short stories gives the reader a unique opportunity to take a look at the scientific philosophy of Vladimir Arnold, one of the most original contemporary researchers. Topics of the stories included range from astronomy, to mirages, to motion of glaciers, to geometry of mirrors and beyond. In each case Arnold's explanation is ......
Mathematical modelling is a subject without boundaries. It is the means by which mathematics becomes useful to virtually any subject. Moreover, modelling has been and continues to be a driving force for the development of mathematics itself. This book explains the process of modelling real situations to obtain mathematical problems that can be ......
This volume stems from the Linde Hall Inaugural Math Symposium, held from February 22-24, 2019, at California Institute of Technology, Pasadena, California. The content isolates and discusses nine mathematical problems, or sets of problems, in a deep way, but starting from scratch. Included among them are the well-known problems of the ......
This book offers an introduction to the use of matrix theory and linear algebra in modeling the dynamics of biological populations. Matrix algebra has been used in population biology since the 1940s and continues to play a major role in theoretical and applied dynamics for populations structured by age, body size or weight, disease states, ......
This book offers a gentle introduction to the geometry of numbers from a modern Fourier-analytic point of view. One of the main themes is the transfer of geometric knowledge of a polytope to analytic knowledge of its Fourier transform. The Fourier transform preserves all of the information of a polytope, and turns its geometry into analysis. The ......
Discrete Differential Geometry (DDG) is an emerging discipline at the boundary between mathematics and computer science. It aims to translate concepts from classical differential geometry into a language that is purely finite and discrete, and can hence be used by algorithms to reason about geometric data. In contrast to standard numerical ......
Have you ever wondered about the explicit formulas in analytic number theory? This short book provides a streamlined and rigorous approach to the explicit formulas of Riemann and von Mangoldt. The race between the prime counting function and the logarithmic integral forms a motivating thread through the narrative, which emphasizes the interplay ......
Keep your mind sharp all year long with Your Daily Epsilon of Math Wall Calendar 2024 featuring a new math problem every day and 13 beautiful math images! Let mathematicians Rebecca Rapoport and Dean Chung tickle the left side of your brain by providing you with a math challenge for every day of the year. The solution is always the date, but the ......
Automorphism groups of Riemann surfaces have been widely studied for almost 150 years. This area has persisted in part because it has close ties to many other topics of interest such as number theory, graph theory, mapping class groups, and geometric and computational group theory. In recent years there has been a major revival in this area due in ......