Presents an aspect of activity in integral equations methods for the solution of Volterra equations for those who need to solve real-world problems. Since there are few known analytical methods leading to closed-form solutions, the emphasis is on numerical techniques. The major points of the analytical methods used to study the properties of the ......
Mathematical models are often used to describe complex phenomena such as climate change dynamics, stock market fluctuations, and the Internet. These models typically depend on estimated values of key parameters that determine system behavior. Hence it is important to know what happens when these values are changed. The study of single-parameter ......
Analysis of Hydrodynamic Models presents a concise treatment of a number of partial differential equations of hydrodynamic origin, including the incompressible Euler equations, SQG, Boussinesq, incompressible porous medium, and Oldroyd-B. The author's approach is based on properties of the particle trajectory maps and on analysis of the ......
This unabridged republication of the 1980 text, an established classic in the field, is a resource for many important topics in elliptic equations and systems and is the first modern treatment of free boundary problems. Variational inequalities (equilibrium or evolution problems typically with convex constraints) are carefully explained in An ......
This book provides a lively and accessible introduction to the numerical solution of stochastic differential equations with the aim of making this subject available to the widest possible readership. It presents an outline of the underlying convergence and stability theory while avoiding technical details. Key ideas are illustrated with numerous ......
Interest in the temporal fluctuations of biological populations can be traced to the dawn of civilization. How can mathematics be used to gain an understanding of population dynamics? This monograph introduces the theory of structured population dynamics and its applications, focusing on the asymptotic dynamics of deterministic models. This theory ......
From Magnetic Fields to Symmetries and Optimization
This self-contained book is the first to provide readers with an introduction to mathematical foundations and modeling of stellarator design. It covers the fundamental theoretical building blocks of magnetic fields modeling, some of the associated challenges, and the main concepts behind optimization for the design of stellarators. The book is ......
In just over 100 pages, this book provides basic, essential knowledge of some of the tools of real analysis: the Hardy-Littlewood maximal operator, the Calderon-Zygmund theory, the Littlewood-Paley theory, interpolation of spaces and operators, and the basics of H1 and BMO spaces. This concise text offers brief proofs and exercises of various ......
Toeplitz systems arise in a variety of applications in mathematics, scientific computing, and engineering, including numerical partial and ordinary differential equations, numerical solutions of convolution-type integral equations, stationary autoregressive time series in statistics, minimal realization problems in control theory, system ......