In many dynamical systems, time delays arise because of the time it takes to measure system states, perceive and evaluate events, formulate decisions, and act on those decisions. The presence of delays may lead to undesirable outcomes; without an engineered design, the dynamics may underperform, oscillate, and even become unstable. How to study ......
This book differs from traditional numerical analysis texts in that it focuses on the motivation and ideas behind the algorithms presented rather than on detailed analyses of them. It presents a broad overview of methods and software for solving mathematical problems arising in computational modeling and data analysis, including proper problem ......
This book is about making decisions driven by experience. In this context, a scenario is an observation that comes from the environment, and scenario optimization refers to optimizing decisions over a set of available scenarios. Scenario optimization can be applied across a variety of fields, including machine learning, quantitative finance, ......
Computational methods to approximate the solution of differential equations play a crucial role in science, engineering, mathematics, and technology. The key processes that govern the physical world-wave propagation, thermodynamics, fluid flow, solid deformation, electricity and magnetism, quantum mechanics, general relativity, and many more-are ......
Web-like waves, often observed on the surface of shallow water, are examples of nonlinear waves. They are generated by nonlinear interactions among several obliquely propagating solitary waves, also known as solitons. In this book, modern mathematical tools-algebraic geometry, algebraic combinatorics, and representation theory, among others-are ......
In just over 100 pages, this book provides basic, essential knowledge of some of the tools of real analysis: the Hardy-Littlewood maximal operator, the Calderon-Zygmund theory, the Littlewood-Paley theory, interpolation of spaces and operators, and the basics of H1 and BMO spaces. This concise text offers brief proofs and exercises of various ......
This book presents new computational tools for the H? control of distributed parameter systems in which transfer functions are considered as input-output descriptions for the plants to be controlled. The emphasis is on the computation of the controller parameters and reliable implementation. The authors present recent studies showing that the ......
Differential equations are the basis for models of any physical systems that exhibit smooth change. This book combines much of the material found in a traditional course on ordinary differential equations with an introduction to the more modern theory of dynamical systems. Applications of this theory to physics, biology, chemistry, and engineering ......