A study, by two of the major contributors to the theory, of the inverse scattering transform and its application to problems of nonlinear dispersive waves that arise in fluid dynamics, plasma physics, nonlinear optics, particle physics, crystal lattice theory, nonlinear circuit theory and other areas. A soliton is a localized pulse-like nonlinear ......
The soliton is a dramatic concept in nonlinear science. What makes this book unique in the treatment of this subject is its focus on the properties that make the soliton physically ubiquitous and the soliton equation mathematically miraculous. Here, on the classical level, is the entity field theorists have been postulating for years: a local ......
Web-like waves, often observed on the surface of shallow water, are examples of nonlinear waves. They are generated by nonlinear interactions among several obliquely propagating solitary waves, also known as solitons. In this book, modern mathematical tools-algebraic geometry, algebraic combinatorics, and representation theory, among others-are ......
This volume reviews, in the context of partial differential equations, algorithm development that has been specifically aimed at computers that exhibit some form of parallelism. Emphasis is on the solution of PDEs because these are typically the problems that generate high computational demands. The authors discuss architectural features of these ......
An accessible text for the study of numerical methods for solving least squares problems remains an essential part of a scientific software foundation. Numerical analysts, statisticians, and engineers have developed techniques and nomenclature for the least squares problems of their own discipline. This well-organized presentation of the basic ......
This user-oriented guide describes state-of-the-art methods for nonlinear equations and shows, via algorithms in pseudocode and Julia with several examples, how to choose an appropriate iterative method for a given problem and write an efficient solver or apply one written by others. A sequel to the author's Solving Nonlinear Equations with ......
This brief book on Newton's method is a user-oriented guide to algorithms and implementation. In just over 100 pages, it shows, via algorithms in pseudocode, in MATLAB, and with several examples, how one can choose an appropriate Newton-type method for a given problem, diagnose problems, and write an efficient solver or apply one written by ......
Numerical Methods in a Unified Object-Oriented Approach
This text provides a comprehensive guide for the numerical solution of PDEs using C++ within an object-oriented approach. The high level of abstraction available in C++ is particularly useful in the implementation of complex mathematical objects, such as unstructured meshes, sparse matrices and multigrid hierarchies, often used in numerical ......
Polynomial continuation is a numerical technique used to compute solutions to systems of polynomial equations. Originally published in 1987, this introduction to polynomial continuation remains a useful starting point for the reader interested in learning how to solve practical problems without advanced mathematics. Solving Polynomial Systems ......