Divided into two self-contained parts, this textbook is an introduction to modern real analysis. More than 350 exercises and 100 examples are integrated into the text to help clarify the theoretical considerations and the practical applications to differential geometry, Fourier series, differential equations, and other subjects. The first ......
Differential equations are the basis for models of any physical systems that exhibit smooth change. This book combines much of the material found in a traditional course on ordinary differential equations with an introduction to the more modern theory of dynamical systems. Applications of this theory to physics, biology, chemistry, and engineering ......
Fast solvers for elliptic PDEs form a pillar of scientific computing. They enable detailed and accurate simulations of electromagnetic fields, fluid flows, biochemical processes, and much more. This textbook provides an introduction to fast solvers from the point of view of integral equation formulations, which lead to unparalleled accuracy and ......
Computational methods to approximate the solution of differential equations play a crucial role in science, engineering, mathematics, and technology. The key processes that govern the physical world-wave propagation, thermodynamics, fluid flow, solid deformation, electricity and magnetism, quantum mechanics, general relativity, and many more-are ......
This book presents new computational tools for the H? control of distributed parameter systems in which transfer functions are considered as input-output descriptions for the plants to be controlled. The emphasis is on the computation of the controller parameters and reliable implementation. The authors present recent studies showing that the ......
Dynamical systems are a principal tool in the modeling, prediction, and control of a wide range of complex phenomena. As the need for improved accuracy leads to larger and more complex dynamical systems, direct simulation often becomes the only available strategy for accurate prediction or control, inevitably creating a considerable burden on ......
Fit for students just starting to build a background in mathematics, this textbook provides an introduction to numerical methods for linear algebra problems. Introduction to Numerical Linear Algebra is ideal for a flipped classroom, as it provides detailed explanations that allow students to read on their own and instructors to go beyond ......
This second edition provides an enhanced exposition of the long-overlooked Hadamard semidifferential calculus, first introduced in the 1920s by mathematicians Jacques Hadamard and Maurice Rene Frechet. Hadamard semidifferential calculus is possibly the largest family of nondifferentiable functions that retains all the features of classical ......
This book is about making decisions driven by experience. In this context, a scenario is an observation that comes from the environment, and scenario optimization refers to optimizing decisions over a set of available scenarios. Scenario optimization can be applied across a variety of fields, including machine learning, quantitative finance, ......