Treats an important set of techniques that provide a mathematically rigorous and complete error analysis for computational results. This book shows that interval analysis provides a powerful set of tools with direct applicability to important problems in scientific computing.
Focuses on finding the minimum number of arithmetic operations needed to perform the computation and on finding a better algorithm when improvement is possible. The author concentrates on that class of problems concerned with computing a system of bilinear forms. Results that lead to applications in the area of signal processing are emphasized, ......
As this monograph shows, the purpose of cardinal spline interpolation is to bridge the gap between the linear spline and the cardinal series. The author explains cardinal spline functions, the basic properties of B-splines, including B-splines with equidistant knots and cardinal splines represented in terms of B-splines, and exponential Euler ......
A unified discussion of the formulation and analysis of special methods of mixed initial boundary-value problems. The focus is on the development of a new mathematical theory that explains why and how well spectral methods work. Included are interesting extensions of the classical numerical analysis.
Finite elasticity is a theory of elastic materials that are capable of undergoing large deformations. This theory is inherently nonlinear and is mathematically quite complex. This monograph presents a derivation of the basic equations of the theory, a discussion of the general boundary-value problems, and a treatment of several interesting and ......
Population processes are stochastic models for systems involving a number of similar particles. Examples include models for chemical reactions and for epidemics. The model may involve a finite number of attributes, or even a continuum. This monograph considers approximations that are possible when the number of particles is large. The models ......
A study of how complexity questions in computing interact with classical mathematics in the numerical analysis of issues in algorithm design. Algorithmic designers concerned with linear and nonlinear combinatorial optimization will find this volume especially useful. Two algorithms are studied in detail: the ellipsoid method and the simultaneous ......
Results and problems in the modern theory of best approximation, in which the methods of functional analysis are applied in a consequent manner. This modern theory constitutes both a unified foundation for the classical theory of best approximation and a powerful tool for obtaining new results.
Facets, Subadditivity, and Duality for Group and Semi-Group Problems
This monograph considers pure integer programming problems which concern packing, partitioning or covering. For this class of problems, an algorithmic framework using a duality approach is offered. Furthermore, the author proposes for the first time a general framework for both packing and covering problems characterizing the convex whole of ......