Contact us on (02) 8445 2300
For all customer service and order enquiries

Woodslane Online Catalogues

9781470480851 Academic Inspection Copy

Principles of Functional Analysis

Description
Author
Biography
Table of
Contents
Reviews
Google
Preview
This excellent book provides an elegant introduction to functional analysis ... carefully selected problems ... This is a nicely written book of great value for stimulating active work by students. It can be strongly recommended as an undergraduate or graduate text, or as a comprehensive book for self-study. -European Mathematical Society Newsletter Functional analysis plays a crucial role in the applied sciences as well as in mathematics. It is a beautiful subject that can be motivated and studied for its own sake. In keeping with this basic philosophy, the author has made this introductory text accessible to a wide spectrum of students, including beginning-level graduates and advanced undergraduates. The exposition is inviting, following threads of ideas, describing each as fully as possible, before moving on to a new topic. Supporting material is introduced as appropriate, and only to the degree needed. Some topics are treated more than once, according to the different contexts in which they arise. The prerequisites are minimal, requiring little more than advanced calculus and no measure theory. The text focuses on normed vector spaces and their important examples, Banach spaces and Hilbert spaces. The author also includes topics not usually found in texts on the subject. This Second Edition incorporates many new developments while not overshadowing the book's original flavor. Areas in the book that demonstrate its unique character have been strengthened. In particular, new material concerning Fredholm and semi-Fredholm operators is introduced, requiring minimal effort as the necessary machinery was already in place. Several new topics are presented, but relate to only those concepts and methods emanating from other parts of the book. These topics include perturbation classes, measures of noncompactness, strictly singular operators, and operator constants. Overall, the presentation has been refined, clarified, and simplified, and many new problems have been added. The book is recommended to advanced undergraduates, graduate students, and pure and applied research mathematicians interested in functional analysis and operator theory.
Martin Schechter, University of California, Irvine, CA.
Chapters Chapter 1. Basic notions Chapter 2. Duality Chapter 3. Linear operators Chapter 4. The Riesz theory for compact operators Chapter 5. Fredholm operators Chapter 6. Spectral theory Chapter 7. Unbounded operators Chapter 8. Reflexive Banach spaces Chapter 9. Banach algebras Chapter 10. Semigroups Chapter 11. Hilbert space Chapter 12. Bilinear forms Chapter 13. Selfadjoint operators Chapter 14. Measures of operators Chapter 15. Examples and applications Appendix A. Glossary Appendix B. Major Theorems
This excellent book provides an elegant introduction to functional analysis ... carefully selected problems ... This is a nicely written book of great value for stimulating active work by students. It can be strongly recommended as an undergraduate or graduate text, or as a comprehensive book for self-study."" - European Mathematical Society Newsletter ""From a review of the first edition: 'Charming' is a word that seldom comes to the mind of a science reviewer, but if he is charmed by a treatise, why not say so? I am charmed by this book. Professor Schechter has written an elegant introduction to functional analysis including related parts of the theory of integral equations. It is easy to read and is full of important applications. He presupposes very little background beyond advanced calculus; in particular, the treatment is not burdened by topological 'refinements' which nowadays have a tendency of dominating the picture. The book can be warmly recommended to any reader who wants to learn about this subject without being deterred by less relevant introductory matter or scared away by heavy prerequisites."" - American Scientist ""This is an excellent book e.g. for somebody working in applied mathematics who wants to learn operator theory from scratch. It contains a wealth of material ... presented in a very elegant way ... book is very pleasant to read."" - Zentralblatt MATH
Google Preview content